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BACKGROUND

It has been estimated that one aerosol component, black carbon, is responsible for 50 % of the total temperature increases in the Arctic from 1890 to 2007 (Shindell and
Faluveg, 2009), and this is amplified because of simultaneous reduction of sulfur aerosols. The way that aerosols affect the Arctic climate depends not only on their
properties, but also the time of the year they reach the Arctic areas.
Aerosol optical properties have been measured continuously in the Finnish (sub-)Arctic
GAW- station Pallas since April 2000.
The scattering and backscattering coefficients:

-integrating nephelometer (model 3563, TSI, Inc.)
Aerosol absorption coefficient (and BC) :

- Aethalometer (model AE31m Magee Scientific)
| Data reported here is at 550 nm wavelength. Instrumental data coverage was 86 %.
The cases when station was inside cloud were left out. This lowered the data
coverage to 51 %. Nonidealities due to nonlambertian and truncation errors in
nephelometer were corrected with the method by Anderson and Ogren (1998) .
The acthalometer filter loading artefact was corrected using approach by
Weingartner et al. (2003)
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Division data according to air mass history. Marine if over 70 % of time in The trend of scattering coefficient during the measurement period was
areas | and IV, continental if more than 50 % of time in areas Il, Ill and V. investigated for each month separately. In all air masses, in summer the

trend is decreasing whereas in winter scattering coefficients are increasing
during the measurement period.
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