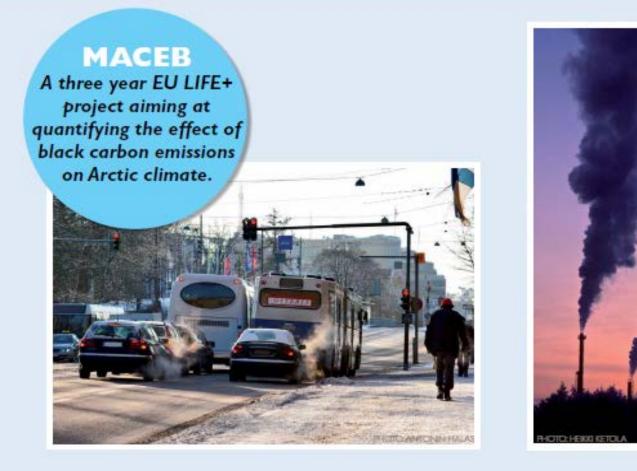
IMPACTS AND REDUCTION POTENTIALS OF SHORT-LIVED CLIMATE FORCERS FROM FINNISH RESIDENTIAL WOOD COMBUSTION

Mikko Savolahti (1)

Niko Karvosenoja (1) Kaarle Kupiainen (1),

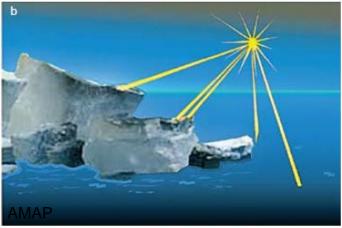
(1) Finnish environment institute (SYKE)


16th IUAPPA Word Clean Air Congress September 2013

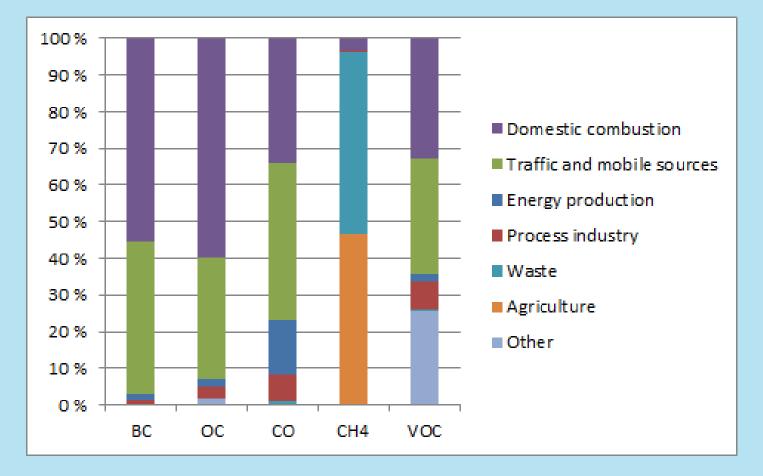
MACEB – Mitigation of Arctic warming by Controlling European Black carbon emissions

Climate forcing Besides CO₂, black carbon in air and snow is a cause to Arctic warming.

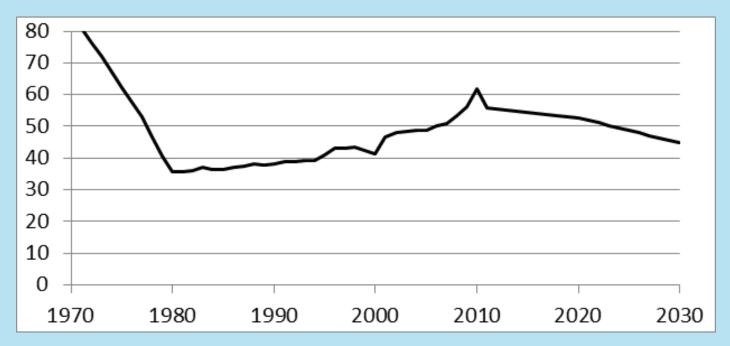
Outline


- Intro
 - What are short-lived climate forcers
 - Most important sources
 - Their role in climate change
- Measures for emission reduction in RWC
 - Technical measures
 - Nontechnical measures
- Reduction potential and costs by measure
- Conclusions

Short-lived climate forcers (SLCF)


- Black carbon (BC), Organic carbon (OC), CH4, VOC, CO
- Products of incomplete combustion
- Almost always co-emitted
- Short lifetime in the atmosphere
- Many are hazardous to health
- Can have warming or cooling effect

SYKE


Sources of short-lived climate forcers

Sources of studied SLCFs in Finland (2010)

S Y K E

Residential wood combustion in Finland

Residential wood combustion in Finland [PJ/a]

Climate impact of SLCFs

GWP factors used (GAINS)

Pollutant	GWP20	GWP100
BC	2200	680
OC	-240	-69
CH4	72	25
СО	4.5	1.9
VOC	12	3.4

Global warming potentials of Finnish emissions

	20	10	20	020	20	30
	GWP 20	GWP 100	GWP 20	GWP 100	GWP 20	GWP 100
Finnish reported GHGs under UNFCCC	88	75	74	63	53	45
SLCFs from RWC	8.8	2.9	7	2.3	5.5	1.8

SYKE

Measures to reduce emissions

Technical measures

- More advanced combustion technology
 - Modern boilers and stoves with better mixing of air and fuel
 - Heat storage tanks for boilers
 - Pellets
- Flue gas cleaning
 - Electrostatic precipitators
 - Catalysts

SYKE

1/2

Schleicher et al. 2011

Measures to reduce emissions

2/2

Non-technical measures

Influencing the combustion habits of stove users
Information campaign

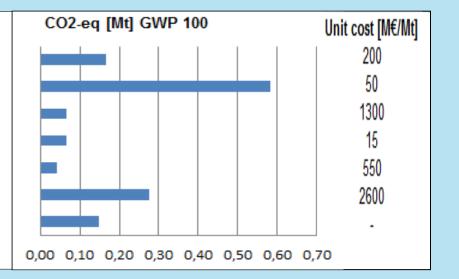
SYKE

www.hengitysliitto.fi

Calcultating the effects and costs of emission reduction measures

Parameters in FRES model

- Emission factors (BC, OC, CO, CH4 & VOC) for different heaters
 - 9 stove gategories, 5 boiler types
 - Reduction efficiencys of ESPs
- Average lifetime of appliances
- Costs (equipment, fuel, maintenance, education)
- Profile of combustion practises


	Share of profile	Share of SC
Accomplished user	25 %	0 %
Average user	60 %	5 %
Problem user	15 %	50 %
Average over		10.5%
profiles		

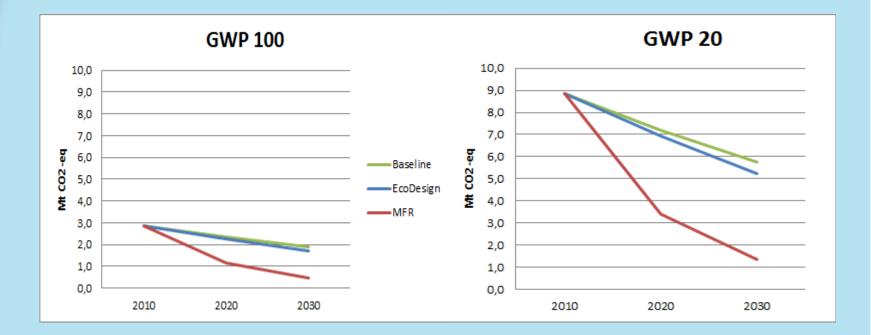
S Y K E

Results

Effects of single measures implemented on baseline

Ecodesign requirements Only modern sauna stoves on the market Acceleration of masonry heater stock renewal Installing heat storage tanks to old log boilers Installing ESPs to boilers Installing ESPs to stoves Good combustion practises in all stoves

Sauna stoves


www.rakentaja.fi

www.harvia.fi

S Y K E

Cumulative effects of measures

Effects of other measures in the National Energy Strategy

SYKE

- Traffic planning to increase the energy efficiency of transportation 0,6 Mt CO2-eq
- Increasing the energy efficiency of housing to save (fossil) heating fuel 0,3 Mt CO2-eq

Stove user behaviour

- Knowledge on current operation practices is lacking
- Operation practices are shown to have significant impact on particle emissions and chemical composition (Frey et al. 2009, Schmidl et al. 2011, Lenz et al. 2008)

• Effects of campaign uncertain, but possible to estimate

- Reduction potential
- Unit costs of reductions

Assumed effect of campaign	Unit cost [M€/Mt CO2/eq]	CO2-eq [Mt] GWP 100
SC decreases 10.5% -> 10%	54,8	0,01
SC decreases 10.5% -> 5%	4,8	0,08
SC decreases 10.5% -> 0%	1,7	0,22

* Cost estimation based on a local information campaign by Helsinki Region Environmental Services Authority

Conclusions

- RWC sector is the major source for many SLCFs in Finland
- Significant climate impacts in addition to detrimental health effects
- Notable reduction potential
- Activity has been increasing
- Ecodesign has relatively minor effect in the near future
- Other measures possible
 - National legislation for sauna stoves
 - Information campaigns (targetting problem areas)
 - New technology (Flue gas cleaning, pellets etc.)

Thanks for your interest

• Contact Info

- Mikko Savolahti
- mikko.savolahti@ymparisto.fi
- Finnish Environment Institute
- Helsinki

