CLIMATE IMPACT OF FINNISH AIR POLLUTANTS AND GHGs WITH DIFFERENT EMISSION METRICS

Kaarle Kupiainen*, Borgar Aamaas, Mikko Savolahti, Niko Karvosenoja, Ville-Veikko Paunu

16th IUAPPA World Clean Air Conference, Cape Town, 30.9.2013

Aims of the work

- Assess the climate impact of Finnish air pollutant and GHG emissions from 2010 until 2030
 - global warming potential (GWP)
 - global temperature change potential (GTP)
 - Multiple pollutants were assessed: SO_2 , NO_X , NH_3 , VOC, BC, OC and CO as well as CO_2 , CH_4 and N_2O
- Multi-pollutant approach that gives important insight into:
 - The net-effect of "cooling" and "warming" components
 - The relative impacts of the short-lived and long-lived components
 - Formulating national policies and opinions to mitigate air pollution and GHGs

Data sources – historical emissions

Pollutant	Data source
Black carbon (BC), organic carbon	FRES model (SYKE)
(00)	
CO	GAINS model (IIASA, http://gains.iiasa.ac.at)
CO_2 , CH_4 and N_2O from	FRES model (SYKE)
combustion sources	
CO_2 , CH_4 and N_2O from other	National inventory of greenhouse gases
sources than combustion	specified in the Kyoto Protocol to the
	Secretariat of the UNFCCC (Statistics
	Υ.
	Finland)
NH ₃ and VOC	National emission inventory to the UNECE
	Convention on Long-Range Transboundary
	• • •
	Air Pollution (CLRTAP) and to the European
	Environment Agency EEA (SYKE)

Future emission scenarios

- Finland's current National Climate and Energy Strategy that was updated in the beginning of 2013.
- The strategy includes two scenarios:
 - 1. a <u>Baseline scenario</u> that fulfils the agreed EU targets and specific national targets for share of renewables and emission reductions in the non-ETS sector; and
 - The <u>With-Additional-Measures scenario (WAM)</u> accelerates measures to reach the non-ETS sector goal compared with baseline and anticipates a 80 percent reduction in CO₂ emissions by 2050 via traffic mode changes and "eco-driving" as well as stricter regulation of energy efficiency of buildings.

Metrics

Earth Syst. Dynam., 4, 145–170, 2013 www.earth-syst-dynam.net/4/145/2013/ doi:10.5194/esd-4-145-2013 © Author(s) 2013. CC Attribution 3.0 License.

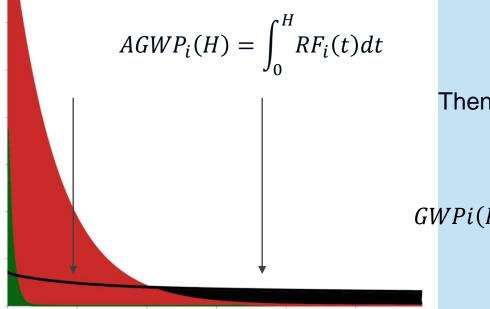
SYKE

Simple emission metrics for climate impacts

B. Aamaas, G. P. Peters, and J. S. Fuglestvedt

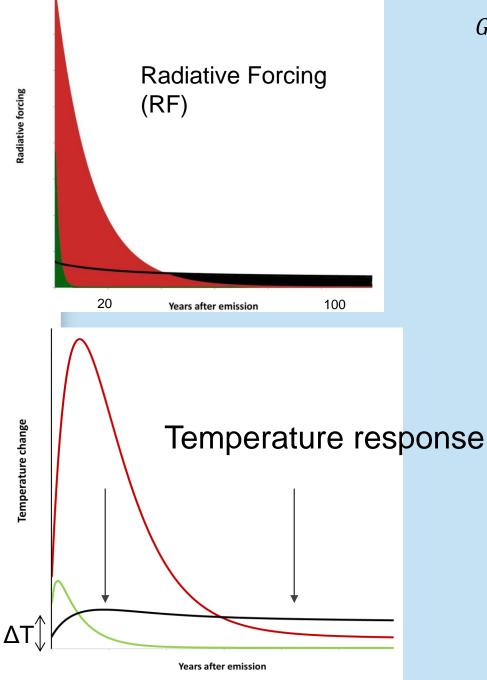
Center for International Climate and Environmental Research - Oslo (CICERO), PB 1129 Blindern, 0318 Oslo, Norway

Correspondence to: B. Aamaas (borgar.aamaas@cicero.oslo.no)


Received: 31 July 2012 – Published in Earth Syst. Dynam. Discuss.: 30 August 2012 Revised: 25 March 2013 – Accepted: 3 April 2013 – Published: 6 June 2013

GWP: Based on pulses of different pollutants

Integrated up to chosen time horizons (H)


Years after emission

Adapted from Shine et al., 2005

Then normalized to AGWP for CO₂:

$$GWPi(H) = \frac{AGWP_i(H)}{AGWP_{CO_2}(H)} = \frac{\int_0^H RF_i(t)dt}{\int_0^H RF_{CO_2}(t)dt}$$

$$GWP_{i}(H) = \frac{\int_{0}^{H} RF_{i}(t)dt}{\int_{0}^{H} RF_{CO_{2}}(t)dt} = \frac{AGWP_{i}(H)}{AGWP_{CO_{2}}(H)}$$

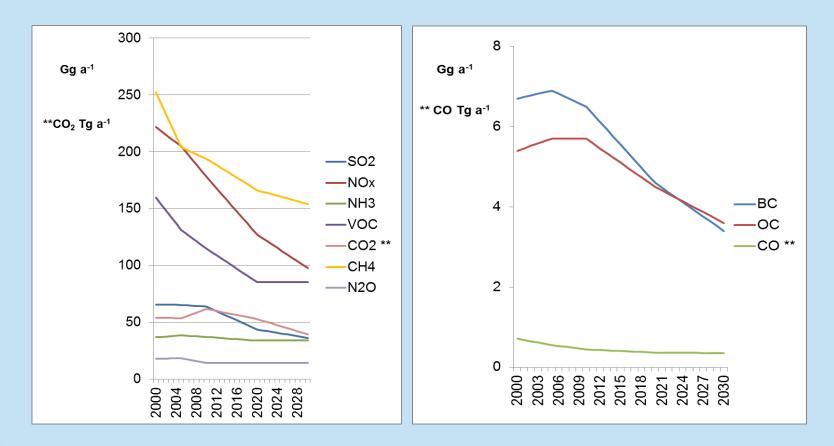
 → strong memory (often misunderstood; no climate response included)

$$GTP_{i}(t) = \frac{AGTP(t)_{i}}{AGTP(t)_{CO_{2}}} = \frac{\Delta T(t)_{i}}{\Delta T(t)_{CO_{2}}}$$

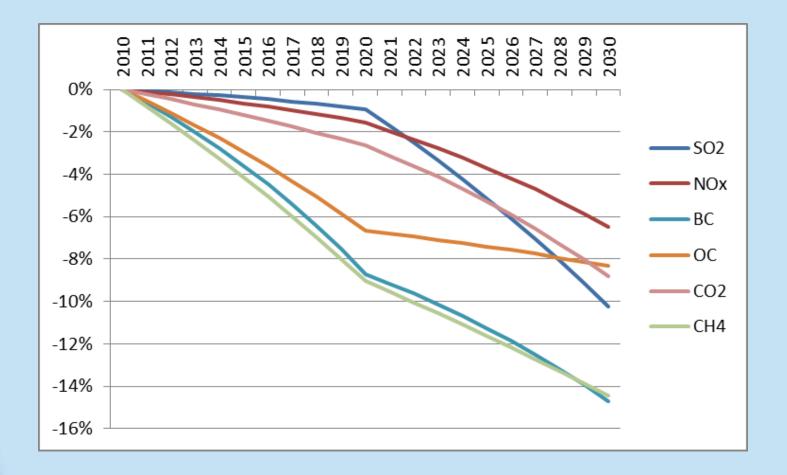
Large differences between GTP and GWP for short-lived components

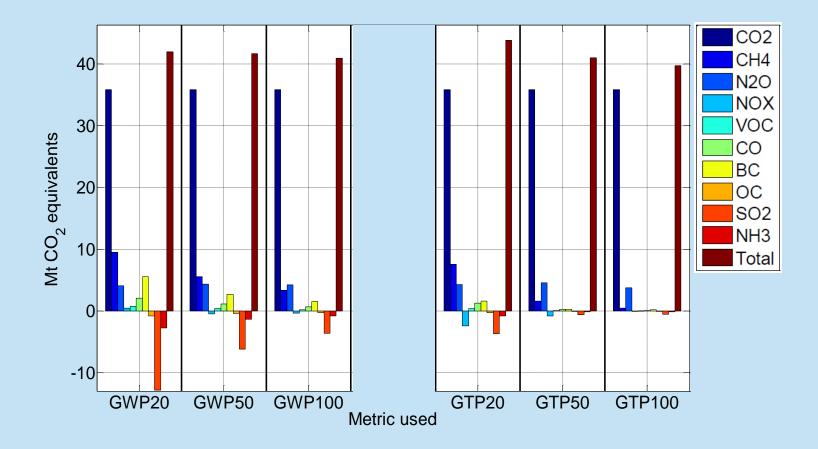
Metrics for emission scenarios

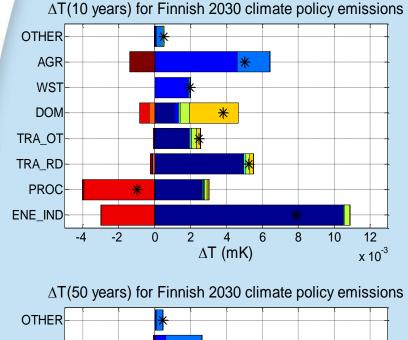
- A pulse emission assumes that the emissions are stopped instantaneously, usually not realistic
- Emission metrics for pulse emissions can serve as building blocks for emission scenario assessments
- For emission scenarios, the AGWP and AGTP values can be calculated with a convolution
- Convolution is a mathematical operation in which 2 mathematical functions are combined to make a modified version of those 2

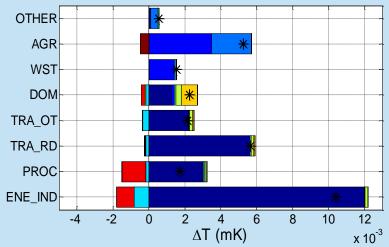

Metric values

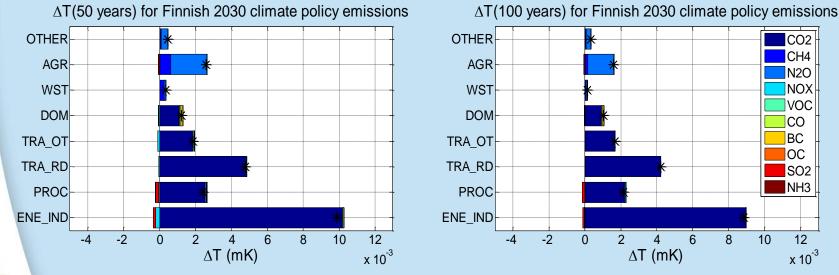
- Species: SO₂, NO_X, NH₃, VOC, BC, OC and CO as well as CO₂, CH₄ and N₂O
- Input consistent with IPCC(2007) and the ATTICA assessment (Fuglestvedt et al., 2010)
- The Impulse Response Function for CO₂ is based on the Bern Carbon Cycle Model (Joos et al., 2001)
- The temperature response is based on the Hadley CM3 climate model (Boucher & Reddy, 2008)
- BC on snow included, 20 % of the direct effect (Bond et al., 2013)
- The aerosol indirect effect included, factor 1.75 of the direct sulfate aerosol effect




Emissions in the baseline scenario of Finland's current National Climate and Energy Strategy (2013)

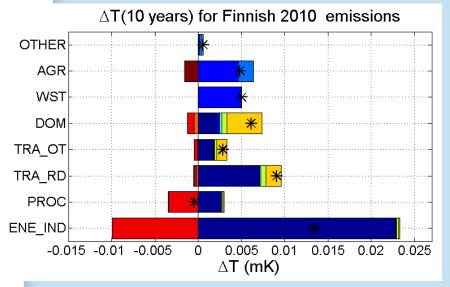

Relative emission changes - WAM scenario vs. the baseline scenario

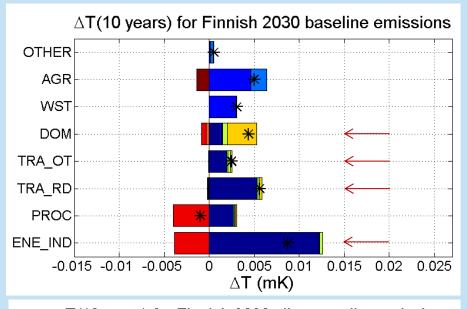

2030 WAM emissions as CO₂ eq

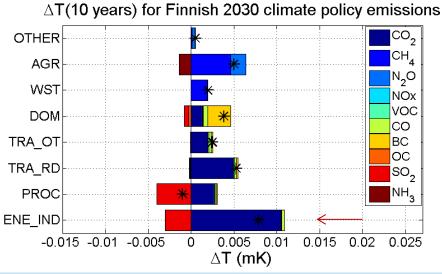


Sector specific temperature differences by pollutants for different time horizons

 $\Delta T(20 \text{ years})$ for Finnish 2030 climate policy emissions




AGR= agriculture, WST=waste, DOM=residential combustion, TRA_OT=off-road transport,


SYKE TRA_RD=on-road transport, PROC=industrial processes, ENE_IND=combustion in energy production and industry

2010 vs 2030 policy analysed with GTP10

- Both baseline and WAM policies reduce the temperature response in 2030 compared with 2010
- Additional reductions via
 WAM are only marginal until 2030 time horizon

Results demonstrate that...

- Policy analyses using climate metrics should include multiple pollutants
- Analyses should be conducted and presented utilizing different metrics and several time scales in order to avoid biased policy messages
- Sector specific policies can be designed based on sector specific analyses
- The Finnish climate policies seem to lead to climate benefits with all metrics. It is important to assure that the policies in the scenarios take place as planned.

Thank you!

Kaarle Kupiainen

Senior Research Scientist, Ph.D. Finnish Environment Insitute (SYKE), Helsinki, Finland Centre for Sustainable Consumption and Production Kaarle.kupiainen@ymparisto.fi

(Also at the International Insitute for Applied Systems Analysis, IIASA)

